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a b s t r a c t

Social stress, including bullying during adolescence, is a risk factor for common psychopathologies such
as depression. To investigate the neural mechanisms associated with juvenile social stress-induced
mood-related endophenotypes, we examined the behavioral, morphological, and biochemical effects
of the social defeat stress model of depression on hippocampal dendritic spines within the CA1 stratum
radiatum. Adolescent (postnatal day 35) male C57BL/6 mice were subjected to defeat episodes for 10
consecutive days. Twenty-four h later, separate groups of mice were tested on the social interaction and
tail suspension tests.

Hippocampi were then dissected and Western blots were conducted to quantify protein levels for
various markers important for synaptic plasticity including protein kinase M zeta (PKMz), protein kinase
C zeta (PKCz), the dopamine-1 (D1) receptor, tyrosine hydroxylase (TH), and the dopamine transporter
(DAT). Furthermore, we examined the presence of the a-amino-3-hydroxy-5-methyl-4-
isoxazolepropionic acid (AMPA)-receptor subunit GluA2 as well as colocalization with the post-
synaptic density 95 (PSD95) protein, within different spine subtypes (filopodia, stubby, long-thin,
mushroom) using an immunohistochemistry and Golgi-Cox staining technique. The results revealed
that social defeat induced a depression-like behavioral profile, as inferred from decreased social inter-
action levels, increased immobility on the tail suspension test, and decreases in body weight. Whole
hippocampal immunoblots revealed decreases in GluA2, with a concomitant increase in DAT and TH
levels in the stressed group. Spine morphology analyses further showed that defeated mice displayed a
significant decrease in stubby spines, and an increase in long-thin spines within the CA1 stratum radi-
atum. Further evaluation of GluA2/PSD95 containing-spines demonstrated a decrease of these markers
within long-thin and mushroom spine types. Together, these results indicate that juvenile social stress
induces GluA2- and dopamine-associated dysregulation in the hippocampus e a neurobiological
mechanism potentially underlying the development of mood-related syndromes as a consequence of
adolescent bullying.
© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Adolescent bullying has become a major risk factor for several
psychiatric illnesses (Nansel et al., 2001), including major
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depressive disorder (Ttofi, 2015). To gain insight into the neural
mechanisms associated with the negative impact of adolescent
bullying and the expression of depression-related symptomatology,
we used the social defeat stress model of depression (Gottfredson
et al., 2015; Kudryavtseva et al., 1991). We selected this preclini-
cal behavioral approach because it can mimic some of the negative
emotional and physical aspects of bullying (Bjorkqvist, 2001),
resulting in depression-related behavior (Krishnan et al., 2007; Yu
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et al., 2011). In this paradigm, experimental mice are exposed to
social and physical conflict by aggressive members of the same
species (see section 2.2 for details), resulting in both physical and
emotional stress (Krishnan et al., 2008; Warren et al., 2013).
Importantly, social defeat utilizes a naturalistic stressor, which
provides strong face and pharmacological validity, in contrast to
other experimental approaches that use more artificial forms of
stress. For example, social defeat induces both neuroendocrine and
behavioral modifications (Keeney et al., 2001), as well as neurobi-
ological alterations across several brain regions that are particularly
vulnerable to stress, including the hippocampus (Tse et al., 2014).
More specifically, it is reported that the CA1 subregion of the hip-
pocampus displays morphological changes as a consequence of
stress exposure (Castaneda et al., 2015; Sebastian et al., 2013a);
however, this relationship has yet to be examined during the ju-
venile stage of development, as a function of social stress specif-
ically. Thus, in order to characterize the effects of social stress on
hippocampal spine morphology during adolescence, we examined
the expression of synaptic markers within CA1 spines.

To do this, we focused on four distinct spine types (filopodia,
stubby, long-thin, and mushroom), which are differentially char-
acterized on the basis of their head and neck ratio (Rochefort and
Konnerth, 2012; Spiga et al., 2011) and vary in their synaptic
capability. For instance, while filopodia and stubby have smaller
spine heads than long-thin and mushroom, they respond more
quickly to changes in synaptic activity (Bourne and Harris, 2007;
Rochefort and Konnerth, 2012), whereas mushroom spines are
more efficient for synaptic transmission. Thus, incorporating a
more discrete analysis of specific spine subtypes allows for better
characterization of spine morphology, which may otherwise be
overlooked when examining total spine changes. Given their role in
the development of these spine types, we determined the expres-
sion of the a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic
acid (AMPA)-receptor subunit GluA2, the dopamine transporter
(DAT), protein kinase C zeta (PKCz), and protein kinase M zeta
(PKMz).

PKMz, a specific autonomously active form of the atypical
isozyme PKCz (Hernandez et al., 2003; Zhou et al., 1994), has been
shown to function in concert with GluA2 during synaptic plasticity
(Ling et al., 2002; Yao et al., 2008). As the trafficking of the GluA2
receptor subunit increases in the synapse during plasticity, clusters
of PKMz/GluA2/PSD95 proteins develop (Shao et al., 2012), pre-
venting AMPA receptors from undergoing endocytosis. Stabiliza-
tion of AMPA receptors within the synaptic membrane is important
for increasing mushroom spine heads (Sebastian et al., 2013a),
which in turn facilitates synaptic plasticity. Additionally, the GluA2
subunit is the rate-limiting factor for calcium influx after activation
(Isaac et al., 2007), and thus plays an important role in modulating
synaptic activity as well (Schmidt et al., 2010). GluA2 is highly
expressed in the hippocampus, and is expressed in the form of two
heterodimers, GluA1/GluA2 and GluA2/GluA3 (Wenthold et al.,
1996), which are important for learning (Joels and Lamprecht,
2010) and long-term memory processes (Braren et al., 2014;
Henley and Wilkinson, 2013; Migues et al., 2010; Sebastian et al.,
2013b). Of increasing interest is that the GluA2 subunit has been
shown to play a functional role in stress-induced depression (Bai
et al., 2003; Bleakman et al., 2007), as traditional antidepressants
(i.e., imipramine and fluoxetine) increase phosphorylation of AMPA
receptors (Du et al., 2007; Svenningsson et al., 2002). This suggests
that AMPA receptor stabilization may underlie the therapeutic ef-
ficacy of antidepressants that involve monoaminergic- and
glutamatergic-related signaling (Berton and Nestler, 2006; Manji
et al., 2001; Skolnick et al., 2009).

Interestingly, the dopamine system is subject to change
following social defeat stress. Studies have identified social defeat
stress-induced decreases in dopamine in the medial prefrontal
cortex (Watt et al., 2009), as well as reduced DAT levels within the
striatum (Isovich et al., 2001). Additionally, dopamine receptor
distribution is altered after social defeat, as evidenced by increased
D1 receptor binding in the caudate putamen and prefrontal cortex
(Avgustinovich and Alekseyenko, 2010), enhanced meso-
corticolimbic dopamine response (Cabib et al., 2000; Tidey and
Miczek, 1996), and increased dopamine neuronal activity in the
ventral tegmental area (VTA; Razzoli et al., 2011). However, no
studies have investigated the expression of hippocampal dopamine
receptors across different spine types, as a function of social defeat
exposure during adolescence e the developmental stage when the
first incidence of major depression is most often reported (Paus
et al., 2008). Thus, we investigated the expression of the D1 re-
ceptor, TH (a marker for dopamine), and DAT within this brain re-
gion, as a function of juvenile social defeat stress exposure.

Our results show that social defeat induces a depression-like
phenotype in adolescent male C57BL/6 mice e a behavioral
response that correlates with increases in hippocampal cytosolic
dopamine markers (DAT and TH), and decreases in synaptic GluA2
levels. Also, social stress induced changes in spine morphology
within the CA1 stratum radiatum (i.e., decreases in stubby along
with increases in long-thin spine subtypes). Further analyses
within hippocampal CA1 spines indicated that defeat stress
reduced the colocalization of GluA2 and PSD95 within long-thin
and mushroom spines. Together, these data identify a potential
neurobiological mechanism involving hippocampal dopamine- and
AMPA receptor-associated deregulation in the expression of mood-
related syndromes as a consequence of bullying during the
adolescent stage of development.

2. Materials and methods

2.1. Animals

A total of 55 male, postnatal day (PD) 35, C57BL/6 mice were
obtained from the Department of Psychology mouse breeding
colony at California State University San Bernardino (CSUSB). Since
the social defeat model of depression (i.e., resident/intruder para-
digm) involves conflict stress (i.e., physical threat) from a more
dominant resident counterpart (Golden et al., 2011; Kudryavtseva
et al., 1991), we purchased CD1 male retired breeders from
Charles River Laboratories to be used as aggressors for this inves-
tigation (Parmigiani et al., 1999). Prior to social defeat stress
exposure, CD1 aggressors were single housed, and C57BL/6 mice
were housed with littermates in groups of 3e4, in standard poly-
propylene cages containing wood shavings. Mice were maintained
in a colony room with a 12 h light/dark cycle (lights on at 7:00 h),
andwith access to food andwater ad libitum. This studywas carried
out in accordance with the recommendations of the NIH Guide for
the Care and Use of Laboratory Animals developed by the Public
Health Service Policy on Humane Care and Use of Laboratory Ani-
mals, as well as the Institutional Animal Care and Use Committee
(IACUC) at CSUSB.

2.2. Social defeat stress and experimental design

The adolescent social defeat stress paradigm was performed as
previously described (I~niguez et al., 2014b). To do this, CD1 retired
breeders with reliable attack latencies (�30 s on three consecutive
screening tests) were housed in cages containing perforated Plex-
iglas separators, which divide the cage into two separate com-
partments (for specific details on all aspects of the social defeat
paradigm see Golden et al., 2011). For each stress session (10 min
per day), defeated mice were placed into the same compartment as
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the CD1 aggressor. Following each 10 min session, the defeated
mice were housed for 24 h in the compartment adjacent to their
respective CD1 aggressor. This procedure ensured that defeated
mice were exposed to a novel CD1 aggressor each day, for 10
consecutive days (PD35-44). In the event that the CD1 aggressor
exhibited repeated forceful attacks (i.e., continuous biting even
after the experimental mouse displayed submissive posturing), the
defeat bout was immediately terminated (Golden et al., 2011;
I~niguez et al., 2014a). Conversely, if the aggressor did not display
a consistent attack towards the experimental C57BL/6 mouse, the
aggressor was removed and replaced by a novel CD1 mouse. Non-
stressed (control) mice were handled daily and housed in similar
cages, one on each side of the perforated Plexiglas separator.
Immediately after the last stress episode (i.e., PD44), all C57BL/6
mice were single housed. Twenty-four h later (PD45; see Fig. 1(a)),
separate groups of experimental mice were tested in either the
social interaction or the tail suspension test. This approach was
taken to avoid possible testing carry-over effects (see Table 1 for
experimental groups). Behavioral testing was conducted between
10:00 and 14:00 h. Animals were euthanized (live decapitation)
40 min after behavioral assessment or transcardially perfused (see
below for details on brain tissue collection).
Fig. 1. Social defeat stress induces a depression-like behavioral response in adolescent
C57BL/6 male mice. (a) Timeline of the experimental procedures. Adolescent (postnatal
day [PD]) 35 mice were exposed to 10 days of social defeat stress (i.e., PD35-44).
Twenty-four h later (PD45), mice were tested on either the social interaction or tail
suspension test. (b) Defeated mice spent less time in the interaction zone in the
presence, versus the absence, of a social target (*p < 0.05, within group comparison),
which was significantly less than that of control mice during the target present con-
dition (#p < 0.05, between group comparison). (c) This reduction of social behavior was
evident when assessing time in the corner zones, in which defeated mice spent
significantly more time in the corners regardless of whether the social target was
present (#p < 0.05, between group comparison) or absent (*p < 0.05, within group
comparison). (d) No differences in total distance traveled between control and
defeated mice were observed during the first 2.5 min of the social interaction test
(target absent condition). (e) Defeated mice spent more time (sec) immobile in the tail
suspension test, when compared to control mice (*p < 0.05). Data are presented as
mean þ SEM.
2.3. Social interaction test

The social interaction test is used to assess social behavior
(Berton et al., 2006). This is a two-step procedure conducted under
red light conditions (Krishnan et al., 2008). In the first 2.5 min
session, the experimental C57BL/6 mouse is allowed to freely
explore an open field arena (40 cm length � 40 cm width � 40 cm
height). Along one side of the arena is a circular (9 cm diameter)
wire cage (Stoelting Co., Wood Dale, IL) that remains empty during
the first trial (target absent condition). The C57BL/6 mouse is then
removed from the testing arena for 30 s (into a separate holding
cage), and a novel CD1 male mouse is placed into the wire cage. In
the second 2.5 min trial (target present condition), the experi-
mental C57BL/6 mouse is reintroduced into this arena now con-
taining a social target (unfamiliar CD1 mouse) within the circular
wire cage. Time (sec) spent in the interaction zone (8 cm wide
corridor surrounding the circular wire cage) in the presence of the
social target, as well as the time (sec) spent in the corners
(10 � 10 cm) of the testing arena (I~niguez et al., 2014b), served as
dependent variables. Additionally, we recorded the distance trav-
eled (cm) during the first 2.5 min of the social interaction test to
examine whether basal locomotor activity was influenced by social
stress exposure (Table 1, group 1). Behavioral outcomes were
scored via an automated video tracking system (Noldus, Asheville,
NC).

2.4. Tail suspension test

The tail suspension test is a behavioral procedure in which ro-
dents are placed in an inescapable stressful condition, where mice
are hung by their tail for 6 min (Steru et al., 1985). Initially, mice
engage in escape-directed behaviors but eventually adopt a posture
of immobility e however, antidepressant treatment can signifi-
cantly increase their escape-directed behaviors, an effect that has
been correlated with pharmacological antidepressant efficacy in
humans (Cryan et al., 2005). Conversely, an animal that spends
more time immobile is considered to be more sensitive to the ef-
fects of inescapable stress (I~niguez et al., 2010). The total time (sec)
spent immobile during the last 5 min of the test was the dependent
variable. Observers that were blind to the experimental conditions
scored behavioral outcomes (Table 1, group 2).

2.5. Tissue fractions

Forty min after the social interaction test (Table 1, group 3),
bilateral hippocampi were microdissected on dry ice, and stored
at �80 �C until processed. The tissue was prepared into two frac-
tions, cytosolic and synaptic (Braren et al., 2014). Hippocampi were
thawed from frozen and homogenized in 200 ml buffer containing
TEE (Tris 50 mM; EDTA 1 mM; EGTA 1 mM), SigmaFast protease
inhibitor cocktail (Sigma Aldrich) diluted to contain AEBSF (2 mM),
Phosphoramidon (1 mM), Bestatin (130 mM), E-64 (14 mM), Leu-
peptin (1 mM), Aprotinin (0.2 mM), and Pepstatin A (10 mM). Ho-
mogenates were centrifuged at 3000 g (5 min at 4 �C), to remove
unhomogenized tissue. The resulting supernatant was centrifuged
at 100,000 g for 30 min. After ultracentrifugation, the supernatant
was collected and stored as the cytosolic fraction. The remaining
pellet was resuspended in 100 ml of homogenizing TEE buffer
containing 0.001% Triton X-100, incubated on ice for 1 h and then
centrifuged at 100,000 g for 1 h at 4 �C. The resulting pellet was
resuspended in 50 ml of TEE buffer and stored as the synaptic
fraction (Braren et al., 2014). The Pierce bicinchoninic acid assay
(BCA; Thermo Scientific, Rockford, IL) was used to determine pro-
tein concentration for each sample. Samples were reduced with 4�
Laemmli sample buffer equivalent to 25% of the total volume of the



Table 1
Experimental groups.

Group Subjects Defeat age Interval Procedure Data

1 Control n ¼ 10 PD35-44 24 h Social interaction Fig. 1(b)e(d)
Defeat n ¼ 10

2 Control n ¼ 6 PD35-44 24 h Tail suspension test Fig. 1(e)
Defeat n ¼ 9

3 Control n ¼ 4 PD35-44 24 h Social interaction/western blot Fig. 3
Defeat n ¼ 7

4 Control n ¼ 4 PD35-44 24 h Social interaction/immunohistochemistry Figs. 4 and 5
Defeat n ¼ 5

PD, postnatal day.
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sample and then boiled and stored frozen at �80 �C.
2.6. Western blotting

Whole hippocampal samples (20 mg) were loaded onto a Tris/
Gly 4e20% mini gel to resolve glyceraldehyde-3-phophate dehy-
drogenase (GAPDH, 37 kDa), PKMz (55 kDa), PKCz (70 kDa), GluA2
(102 kDa), TH (58 kDa) DAT (50 kDa) and D1 (48 kDa). Every gel
contained 3e4 lanes loaded with the same control sample, all brain
sample (ABS). ABS was used to standardize protein signals between
gels. Gels were transferred to nitrocellulose membranes in the
IBlot® Dry Blotting System (Life Technologies; Carlsbad, CA) for
9 min. Nitrocellulose membranes were then incubated in blocking
solution containing 5% sucrose in Tris Buffered Saline with Tween-
20 (TBST; 0.1% Tween-20 in TBS) for 30 min at room temperature
(I~niguez et al., 2012). Samples were incubated with the following
primary antibodies overnight: GluA2 (monoclonal; anti-mouse
1:2000; Chemicon, Temecula, CA), D1 (polyclonal; anti-rabbit
1:1000, AbCam, Cambridge, MA), DAT (polyclonal; anti-rabbit
1:1000, Santa Cruz Biotechnology; Santa Cruz, CA), TH (poly-
clonal; anti-rabbit 1:2000; EMD Millipore, Billerica, MA), PKMz/
PKCz (polyclonal; anti-rabbit 1:2000; Santa Cruz Biotechnology,
Santa Cruz, CA), and GAPDH: (1:2000, Chemicon, Temecula, CA).
Membranes were washed in TBST for 20 min and probed with
horseradish peroxidase conjugated secondary antibody. Mem-
branes were incubated with enhanced chemiluminescence sub-
strate and exposed on CL-XPosure film (Thermo Scientific;
Rockford, IL). Films were scanned for quantificationwith NIH Image
J.
2.7. Golgi-immunohistochemistry (Golgi-IHC)

Golgi-IHC experiments were performed as previously reported
(Pinto et al., 2012; Sebastian et al., 2013a; Spiga et al., 2011). Spe-
cifically, 40 min after the social interaction test (i.e., PD45), animals
were perfused with phosphate buffered saline (PBS) followed by 4%
paraformaldehyde and post-fixed overnight in 4% para-
formaldehyde (Table 1, group 4). The following day, brains were
washed in 0.4 M Sorensonon's phosphate buffer prior to being
incubated in Golgi-Cox solution for 2 days. The Golgi-Cox solution
consisted of 5% potassium chromate, 5% potassium dichromate, and
5% mercuric chloride. Following 2 days of incubation, the brains
were transferred to a fresh Golgi-Cox Solution for an additional 14
days. Brains were transferred to a 30% sucrose solution for 2 days
for cryoprotection. Brains were then snap frozen and cut serially
into 100 mm coronal sections. In order to develop the Golgi stain,
three brain sections per animal containing the septal hippocampus
(~1.8e2 mm posterior to Bregma) were washed in deionized water
for 1 min, placed in 50% NH4OH for 30 min (Pinto et al., 2012;
Sebastian et al., 2013a), and placed in fixer solution (Kodak;
Rochester, NY) for an additional 30 min. For the
immunohistochemical staining, sections were washed in PBS for
10 min three times and placed in a blocker solution containing 5%
normal goat serum, 5% bovine serum albumin, and 0.5% Triton X-
100 in PBS. The following day sections were incubated in primary
antibodies selective for GluA2 (monoclonal; mouse) and PSD95
(polyclonal; rabbit) (1:1000 in PBS, EMD Millipore; Billercia, MA)
for 48 h at 4 �C. Following incubation in primary antibodies, sec-
tions were incubated in secondary antibodies (1:1000 in PBS) for
2 h at room temperature. Sections were then washed in PBS three
times for 10 min and mounted onto slides and cover slipped with
ProLong Gold antifade reagent (Life Technologies; Grand Island,
NY). Fluorescent-labeled antibodies were matched to laser excita-
tion wavelengths (anti-rabbit 488 nm, anti-mouse 594 nm), and to
visualize Golgi-filled dendrites, a 514 nm laser reflected the
branches. Images were taken with a Leica SP2 confocal microscope
in a 1024 � 1024 format at 12 bits to achieve 0.146 voxels per mm,
and each scan linewas averaged twice. Confocal images of dendritic
branches emanating from the secondary dendrite in the apical tree
were selected from pyramidal cells located in stratum radiatum of
CA1. One to three neurons per sectionwere imaged. This amounted
to 30 branches per experimental condition (Pinto et al., 2012;
Sebastian et al., 2013a). Z-stacks (step size of 0.122 mm) were ac-
quired using preset laser and gain settings.
2.8. IMARIS spine analysis

Following imaging, IMARIS 7.5 filament tracer was used to
reconstruct each dendrite in 3D. Using customized algorithms,
spines were classified as either filopodia, stubby, long-thin, or
mushroom (Sebastian et al., 2013a). In order to quantify the pres-
ence of GluA2 and PSD95 positive voxels within the spine, channels
were made corresponding to each protein of interest. The number
of voxels for GluA2, PSD95, and colocalized voxels for GluA2/PSD95
from the dendritic spine alone were subtracted from the total
amount of voxels colocalized within the branch.
2.9. Statistical analyses

Behavioral data was analyzed using ANOVA techniques, with
stress (control vs. defeat; between variable), presence of social
target (absent vs. present; repeated measure), and day of defeat (10
days; repeated measure) as sources of variance, followed by Tukey
post hoc tests. Student's t-tests were used for analyses implicating
two-group comparisons (tail suspension test, Western blots, and
spine-type density analyses). Golgi-IHC data were analyzed using
ANOVA techniques, with spine type (filopodia, stubby, long-thin,
mushroom; between variable) and stress (control vs. defeated;
between variable) as sources of variance, followed by planned post
hoc comparisons (independent t-test). Spine density was normal-
ized by branch length, and spine IHC data were normalized by
number of spines on each branch (data was averaged across
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Fig. 2. Effects of social defeat stress on body weight in adolescent male C57BL/6 mice.
Social defeat (postnatal day 35e44; gray area) reduced overall body weight across days
of stress, starting on day 4 of stress exposure (postnatal day 38), when compared to
non-stressed controls (n ¼ 24). Body weight remained significantly lower in the
defeated group (n ¼ 31) 24 h after the last day of stress exposure (postnatal day 45).
Arrow indicates day of behavioral testing and brain tissue collection. *Significantly
different when compared to controls (p < 0.05). Data are presented in grams
(mean ± SEM).
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animals so that each animal was only represented once per
dependent measure). Data are presented as meanþ SEM. Statistical
significance was defined as p < 0.05.

3. Results

3.1. Social interaction

The effects of social defeat stress on adolescent social behavior
are shown in Fig. 1(b)e(d). A two-way ANOVA, with stress (control
vs. defeat) and presence of social target (absent vs. present) as in-
dependent variables, indicated that the time (sec) spent in the
interaction zone was influenced by stress exposure (main effect:
F1,36 ¼ 14.42, p < 0.05), the presence of the social target (main ef-
fect: F1,36¼ 6.93, p < 0.05), as well as their interaction (F1,36¼ 32.44,
p < 0.05). Specifically, Fig. 1(b) displays how defeated mice (n ¼ 10)
spent less time in the interaction zone in the presence of the target
(target absent vs. present, p < 0.05), or when compared to non-
stressed controls (between group comparison, p < 0.05). Fig. 1(c)
demonstrates how this stress-induced avoidance-like phenotype is
also evident when assessing the time spent in the corner zones
(stress � target interaction: F1,36 ¼ 36.29, p < 0.01). Not surpris-
ingly, non-defeated controls (n¼ 10) spent significantly less time in
the corner zones in the presence, versus the absence, of the social
target (within group comparison, p < 0.05). Conversely, defeated
mice spent greater time in the corners in the presence of the target
(within group comparison, p < 0.05), as well as when compared to
non-stressed controls (between group comparison, p < 0.05).
When assessing distance traveled (cm) during the first 2.5 min
interaction trial (i.e., target absent condition), no differences were
evident as a function of defeat stress (t18 ¼ 0.51, p > 0.05), thus,
indicating that adolescent social stress exposure did not influence
general locomotor activity or exploratory behavior (Fig. 1(d)).

3.2. Tail suspension test

Fig. 1(e) shows how social defeat stress increases sensitivity to
behavioral despair measures, as inferred by the tail suspension test,
in adolescent male C57BL/6 mice. Here, when compared to non-
stressed controls (n ¼ 6), defeated mice (n ¼ 9) spent signifi-
cantly more time (sec) in the immobile position (t13 ¼ 3.75,
p < 0.01).

3.3. Body weight

Fig. 2 shows the effects of adolescent social defeat stress on body
weight in male C57BL/6 mice. Body weight was recorded prior to
the initiation of each defeat episode (PD35-44), as well as before
behavioral testing (PD45). A mixed-design repeated measures
ANOVA indicated that body weight (g) changed as a function of
stress exposure (between group main effect: (F1,53 ¼ 7157.0,
p < 0.0001)), day of defeat episode (repeated measure main effect:
F10,530 ¼ 156.5, p < 0.0001), and a stress by day of defeat interaction
(F10,530 ¼ 20.4, p < 0.0001). Post hoc analyses further revealed that
when compared to control mice (n ¼ 24), defeated mice (n ¼ 31)
displayed lower body weight as of the fourth day (i.e., PD38) of
stress exposure (p < 0.05, respectively). Twenty-four h after the last
defeat episode (i.e., PD45), adolescent mice exposed to defeat stress
weighted significantly less than control mice (t53 ¼ 4.1, p < 0.001).

3.4. Western immunoblot analysis

Fig. 3 shows the protein expression differences between social
defeat (n¼ 7) and control (n¼ 4) conditions for TH, DAT, D1, GluA2,
PKMz, and PKCz, in adolescent C57BL/6 mice. Social defeat stress
increased cytosolic TH (t9 ¼ 3.49, p < 0.01) and DAT (t9 ¼ 2.67,
p < 0.05) in the adolescent hippocampus of male C57BL/6 mice,
when compared to controls (Fig. 3(a) and (b)). No differences in
synaptic D1 levels were observed between the groups (p > 0.05,
Fig. 3(c)). The protein expression for the AMPA receptor subunit
GluA2 (Fig. 3(d)) was significantly decreased as a function of social
defeat stress (t9 ¼ 2.39, p < 0.05). Lastly, there were no differences
in synaptic PKMz or PKCz levels (p > 0.05, respectively) as a func-
tion of social defeat stress (Fig. 3(e) and (f)).

3.5. Spine morphology analysis

Fig. 4 shows the effects of social defeat stress on spine density
and morphology (filopodia, stubby, long-thin, and mushroom)
within the CA1 region of the adolescent hippocampus, in male
C57BL/6mice. Fig. 4(a) shows that therewas no difference in overall
spine density (voxels/spine) as a function of stress exposure be-
tween the groups (p > 0.05). Conversely, when examining spine
density across spine morphology (Fig. 4(b)), a significant decrease
in stubby spines (t28 ¼ 2.90, p < 0.001) with a concomitant increase
in long-thin spines (t28 ¼ 5.72, p < 0.001) was observed. Lastly,
social stress did not influence the total number of filopodia
(p > 0.05), or mushroom (p > 0.05) spine types between the groups.

3.6. Spine immunohistochemistry analysis

Fig. 5 shows the effects of social defeat stress on the expression
of GluA2, PSD95, and their colocalization, as a function of spine-
type within the adolescent CA1 region of the hippocampus. A 2-
way ANOVA with stress (control vs. defeat) and spine-type (filo-
podia, stubby, long-thin, mushroom) as sources of variance indi-
cated that the number of spines expressing GluA2 (main effect:
F1,28 ¼ 6.66, p < 0.01), as well as the colocalization of GluA2 and
PSD95 (main effect: F1,28 ¼ 17.43, p < 0.001) varied as a function of
stress exposure (control, n ¼ 4; defeated, n ¼ 5). Planned com-
parisons further indicated that the defeated mice displayed de-
creases of GluA2 (Fig. 5(a)) as well as the colocalization of GluA2
and PSD-95 (Fig. 5(c)) within long-thin and mushroom spine sub-
types, when compared to non-stressed control mice (p < 0.05,
respectively).

4. Discussion

Our data show that social defeat stress induces a depression-like



Fig. 3. Effects of social defeat stress on hippocampal dopamine- and GluA2-related function in adolescent male C57BL/6 mice. (a) Social defeat stress increased cytosolic tyrosine
hydroxylase (TH), when compared to controls (**p < 0.01). (b) Similarly, social defeat stress increased cytosolic dopamine transporter (DAT) levels, when compared to controls
(*p < 0.05). (c) No differences in synaptic dopamine-1 receptors (D1) were observed between the groups (p > 0.05). (d) Conversely, social defeat stress reduced synaptic GluA2 when
compared to controls (*p < 0.05). (eef) No differences in synaptic PKMz or PKCz were evident following social defeat stress (p > 0.05). Arbitrary units (AU). Data are presented as
ratio of total protein normalized to GAPDH (mean þ SEM).

Control Defeated
0.0

0.5

1.0

1.5

2.0

2.5

Vo
xe

ls
/S

pi
ne

 Spine Density

Filopodia Stubby Long-Thin Mushroom
0.0

0.2

0.4

0.6

0.8

1.0

Vo
xe

ls
/S

pi
ne

Spine Morphology

*

*

Control
Defeated

ba

Fig. 4. Effects of social defeat stress on spine density and morphology within the CA1 of the adolescent hippocampus in male C57BL/6 mice. (a) Social defeat did not alter overall
spine density as a function of stress (p > 0.05). (b) Conversely, when assessing spine morphology, social defeat significantly decreased stubby spines (p < 0.01), and increased long-
thin spines (p < 0.01), while having no effect on filopodia (p > 0.05) or mushroom spines (p > 0.05). Data are presented as voxels per micron (mean þ SEM).
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behavioral phenotype in adolescent male C57BL/6 mice, as inferred
from decreased social behavior in the social interaction test
(Fig. 1(b) and (c)), increased time spent immobile in the tail sus-
pension test (Fig. 1(e)), and decreases in body weight (Fig. 2). As
such, this behavioral profile indicates that social stress (i.e.,
bullying), during adolescence, mimics some of the core symptoms
of depression (social avoidance, despair, and weight fluctuation).
Consequently, by including the tail suspension test as a despair
measure, our experimental approach provides additional face val-
idity for the social defeat model (Chaudhury et al., 2015) in juvenile



Fig. 5. Effects of social stress on GluA2, PSD95, and their colocalization across spine types in the CA1 region of the hippocampus in adolescent C57BL/6 male mice. Social defeat
stress decreased (a) GluA2 expressionwithin long-thin and mushroom spines (*p < 0.05). (b) No changes in PSD95 were observed across spine types (p > 0.05) as a function of stress
exposure. Conversely, (c) the number of spines expressing the colocalization of GluA2 and PSD95 was reduced in long-thin and mushroom spines (*p < 0.05). Representative images
of a dendritic branch from a control (dee) and socially defeated animal (feg). Scale bar ¼ 5 mm for d and f; 2.5 mm for e and g. Red arrows indicate stubby spines. Blue arrows
indicate long-thin spines. White voxels represent GluA2/PSD95 colocalization. Data are represented as mean voxels per spine (mean þ SEM). (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
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mice (I~niguez et al., 2014b).
Preclinical, clinical, and postmortem studies suggest that

various hippocampal-signaling molecules implicated in the
remodeling of neuronal processes (Duric et al., 2013), including
glutamate and dopamine receptors, play a critical role in the eti-
ology of depression (Hashimoto, 2011; Leggio et al., 2013). There-
fore, we selected to examine how juvenile social defeat stress
influences receptors associated with dopamine and glutamate
signaling (D1 and GluA2) and the expression of distinct spine types
within the hippocampus. This approach was taken given that the
hippocampus is a brain region that is undergoing volumetric
changes during adolescence (Andersen and Teicher, 2008; Meyer
et al., 1978), the stage of development when the first incidence of
depression is most often reported (Paus et al., 2008).

4.1. Adolescent social defeat decreases stubby spines and increases
long-thin spines in CA1

Our results show that social defeat stress alters the morphology
(Fig. 4(b)), but not the density of dendritic spines (Fig. 4(a)), 24 h
post last defeat, in adolescent male C57BL/6 mice. This is distinct
from other reports, using adult rodents, where they have identified
significant decreases in overall spine densities within the hippo-
campus after social defeat stress (Jiang et al., 2015). Specifically, our
data demonstrate that CA1 dendrites of adolescent defeated mice
exhibit a decrease in spines lacking a neck (stubby) and an increase
in spine with a long neck (long-thin). It is possible that these spine-
type specific changes (Fig. 4(b)), as a function of social defeat stress,
are age-dependent, given that the adolescent hippocampus is un-
dergoing substantial overproduction and pruning of synapses
during this time (Andersen and Teicher, 2008). Indeed, it has been
demonstrated that other forms of stress can dysregulate the
signaling molecules that influence the developmental pattern of
dendritic spines in the hippocampus (Bath et al., 2013). An increase
in long-thin spines with a concomitant decrease in stubby spines
identifies a shift in spine stability as a consequence of social defeat
stress. Large spines form stronger, longer lasting synapses, while
small spines are generally transient, forming weaker synapses
(Kasai et al., 2003; Sebastian et al., 2013a). We hypothesize that this
dynamic switch between stubby and long-thin spines may underlie
the expression of the depression-related behavior observed in the
current study. This interpretation is consistent with our behavioral
data showing increased avoidance and despair-like responses after
juvenile exposure to stress (Fig. 1(b)e(e))e a behavioral phenotype
that is regulated in a bidirectional manner by stress and antide-
pressants in a hippocampus-circuit-dependent manner (Bagot
et al., 2015; Duman and Aghajanian, 2012; Snyder et al., 2011).

Due to the lack of a restrictive neck on stubby spines, a loss of
these spine types should negatively influence the excitability of its
parent dendrite. Two-photonmicroscopy studies on CA1 pyramidal
neurons have shown that the length of the spine neck restricts the
amount of calcium influx into the dendritic shaft (Noguchi et al.,
2005; Takasaki and Sabatini, 2014), thereby reducing the spread
of calcium within the dendrite following stimulation, which is
necessary for action potential generation. The idea that social
defeat is altering the excitability of the hippocampus by altering
spine morphology is further supported by studies showing that the
length of the spine neck is negatively correlated with membrane
potentials in the dendritic shaft, as well excitatory postsynaptic
potentials generated within the spine head (Araya et al., 2006). The
potential decrease in hippocampal excitability after social defeat
stress may be an underlying mechanism for the endophenotypes
associated with adolescent depression. Interestingly, this process
(i.e., decrease of stubby spines along with increases in long-thin
spines) may be a neurobiological factor of the juvenile social
defeat model (i.e., social avoidance, despair, and weight
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fluctuation). Thus, this paradigm may be useful when examining
additional features of depression that are hippocampal-dependent,
such as memory impairment that may result from stress-induced
hypoexcitability. Indeed, recent reports demonstrate that adult
patients suffering from depression who perform poorly on various
memory-related tests display decreased blood oxygen-level
dependent (BOLD) activity within this brain region (Milne et al.,
2012). However, whether these observations would extend to the
adolescent human population remains to be investigated. To date,
only long-term effects on memory performance have been exam-
ined at the preclinical level with the use of the juvenile social defeat
model (Novick et al., 2013), and thus, caution should be practiced
when extending our results to the clinical population.

4.2. Adolescent social defeat stress increases corticosterone: a
mechanism for spine remodeling

It is plausible that there is a role for corticosterone in the
observed juvenile stress-induced spine remodeling. Results from
our previous work show that adolescent social defeat stress in-
creases blood serum corticosterone (I~niguez et al., 2014b), which
we hypothesize may play a role in spine remodeling. It has been
demonstrated that corticotropin-releasing hormone (CRH) recep-
tor 1 (CRHR1) is located on dendritic spines of pyramidal neurons
(Chen et al., 2004; Van Pett et al., 2000). Acute psychological stress
induces release of hippocampal CRH activating the CRHR1 (Chen
et al., 2006; Refojo et al., 2005), and leads to a rapid reduction in
dendritic spines (Chen et al., 2008). Not surprisingly, memory
deficits induced by social defeat stress are reversed in a CRHR1-
dependent manner (Wang et al., 2011). As such, these findings
point to the possibility that a sustained elevation of endogenous
CRH during social defeat stress may play a role in spine remodeling,
and thus, underlie the increases in sensitivity to behavioral despair
measures (tail suspension test), as well as the decreases in social
behavior observed in adolescent mice. However, whether this
proposed CRH-mediated increase in sensitivity to mood-related
behaviors, after social defeat stress, is specific to the juvenile
stage of development requires future detailed investigatione given
that the deleterious effects of stress on hippocampal dependent
behaviors are not always similar across age (Barha et al., 2011;
Eiland and Romeo, 2013; McCormick and Green, 2013).

4.3. Tyrosine hydroxylase (TH) and dopamine transporter (DAT)
increase after social defeat exposure during adolescence

Our results demonstrate that the levels of TH and DATwere both
significantly elevated after social defeat indicating elevated dopa-
mine activity within the adolescent hippocampus following stress.
This is likely the case, as it has been shown that increased levels of
VTA-dopamine are mediated through the activation of the corti-
cotropin releasing factor receptor-2 in the prefrontal cortex (Holly
et al., 2015), which in turn, could activate projections to CA1
(Goldman-Rakic et al., 1984). Dopamine has been shown to
decrease low frequency signals while enhancing high frequency
signals in CA1 specifically (Ito and Schuman, 2007). This may sug-
gest that dopamine modulates the interaction between cortical
activity following stress exposure, and hippocampal frequency-
dependent synaptic plasticity. Indeed, a recent study has shown
that decreases in dopamine D1 receptors within the prefrontal
cortex are associated with increased social avoidance after social
defeat stress (Huang et al., 2016). Not surprisingly, because the
hippocampus is important for learning and memory processes, this
study also showed that social stress led to impaired recognition
memory, in a somewhat similar fashion as in D1 knockout mice (El-
Ghundi et al., 1999). Thus, the cortical-related dopamine frequency
signals to the hippocampus may be important for the expression of
cognitive deficits that are associated with stress-induced illnesses
like depression (Pittenger and Duman, 2008). It is possible that the
increases in TH and DAT (independent of D1 receptor expression;
Fig. 3(a)e(c)) observed within the hippocampus in the current
study may be mediated by altered cortical frequency signals
induced by social stress, thus leading to increased depressive-like
outcomes.

4.4. GluA2 and its colocalization with PSD95 is decreased in long-
thin and mushroom spines after adolescent social defeat stress

A decrease in GluA2 expressionwithin long-thin andmushroom
dendritic spines after social defeat stress is consistent with reports
that identify altered MAPk signaling after chronic social defeat (Iio
et al., 2011; I~niguez et al., 2010). MAPk is an upstream marker of
GluA2 trafficking, suggesting that the downstream expression
involving the synaptic trafficking of GluA2would also be decreased.
Given that the GluA2 subunit is responsible for mediating the
majority of excitatory neural transmission, the decrease in this
subunit may reduce the efficacy of synaptic transmission within
various spine types. This finding is corroborated by thewestern blot
findings identifying an overall decrease in GluA2 levels within a
synaptic fraction (Fig. 3(d)). Other studies support these data,
showing decreases in AMPA receptor number and function in CA1
after chronic unpredictable stress (Kallarackal et al., 2013). Low
levels of AMPA receptors containing GluA1 have also been associ-
ated with increased vulnerability to depression-like behavior
(Schmidt et al., 2010). Reductions in GluA2 levels, specifically, have
been shown to also decrease spine densities in a synaptic scaf-
folding molecule (S-SCAM)-dependent manner (Danielson et al.,
2012). Here, we extend these findings by showing alterations
across specific spine types (long-thin andmushroom) in adolescent
male mice (Fig. 5(a)).

Elevated corticosterone induced by adolescent social defeat
stress (I~niguez et al., 2014b) may be a mechanism by which we
observe reductions in GluA2 containing spines. Although cortico-
sterone does not affect the level of AMPA receptor subunit mRNA
(Liu et al., 2006), it has been shown to decrease synaptic AMPA
receptor trafficking andmobility (Martin et al., 2009). However, the
reduced levels of GluA2 did not influence the synaptic levels of
either PKMz or PKCz, suggesting that the social defeat effects are
restricted to receptor trafficking.

Future studies will be needed to determine whether these
trafficking mechanisms are affected by the ability of the subunit to
interact with the cytoskeletal architecture of the spine. Indeed,
previous reports examining post-mortem tissue (dorsolateral pre-
frontal cortex) from patients with depression have shown a dys-
regulation in the phosphorylation of spectrin, clathrin, and
synapsin (Martins-de-Souza et al., 2012)e all which are involved in
the expression of transmembrane protein, cell morphology, and
synaptic transmission. Clathrin in particular has been shown to be
involved in NMDA receptor dependent internalization of GluA2
(Anggono and Huganir, 2012), which may underlie the observed
decrease in GluA2 levels.

It remains to be determined whether the levels of cytosolic
PKMz and/or PKCz are altered, which could be a contributing factor
in reduced synaptic levels of GluA2 (Yao et al., 2008). Thus, lower
levels of GluA2 containing spines suggest that it may also disrupt
dopamine function. Dopamine bursting activity is independent of
baseline firing rates and, as such, can produce transient periods of
high frequency activity that require glutamatergic input (Grace and
Bunney, 1984). The number of dopamine neurons active at a given
time is largely regulated by the hippocampus (Floresco et al., 2001;
Lodge and Grace, 2011), indicating that GluA2 and dopamine
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activity are intimately linked during hippocampal function poten-
tially modulating depressive-like behavior (Bagot et al., 2015).

4.5. Concluding summary

Our results highlight a role for dopamine and AMPA receptors,
within the hippocampus, in the mediation of juvenile social defeat-
induced depression-like behavior. The observed hippocampal
reduction in GluA2 expression within long-thin and mushroom
spines, alongwith a concomitant increase in TH and DAT represents
potential dysfunction associated with mood-related illnesses, such
as depression (Korte et al., 2015; Lodge and Grace, 2011). Antide-
pressants have been found to rescue AMPA dysfunction in chroni-
cally stressed animals (Kallarackal et al., 2013) and further increase
AMPA phosphorylation and surface expression (Martinez-Turrillas
et al., 2002; Svenningsson et al., 2002). Specifically, fluoxetine, a
selective reuptake inhibitor, increases AMPA-induced currents in
pyramidal cells via activation of D1 receptors in the prefrontal
cortex (Bjorkholm et al., 2015) and reverses behavioral signs of
depression by increasing them (Kobayashi et al., 2012). Future
studies will be needed to delineate whether the alterations
observed in hippocampal spine morphology may be restored
within the CA1 via dopamine and glutamate-dependent antide-
pressant mechanisms. Collectively, these data provide novel insight
into the potential neurobiological factors that underlie the
expression of stress-induced depression symptomology in the ju-
venile population, as a result of social stressors like bullying.
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